咨询热线:021-80392549

 QQ在线  企业微信
 资讯 > 智能机器人 > 正文

中科院取得多模态神经感知研究进展,有助研发高智能机器人

2022/06/10澎湃新闻315

近日,中国科学院微电子研究所刘明院士团队和复旦大学教授刘琦团队在多模态神经形态感知研究方面取得进展。



图1生物躯体感觉系统与人工体躯体感觉系统,a为人手感知杯子的温度、重量和水杯形状的示意图;b为由MFSN阵列和SNN分类器组成的人工躯体感觉系统模拟触觉感知的示意图,图片来自中科院微电子所前述团队共同研发了一种结构紧凑的多模态融合感知脉冲神经元(MFSN)阵列,并将其与脉冲神经网络(SNN)结合,构建了一种人工多模态感知系统。该成果使构建高效的多模态脉冲感知系统成为可能,为发展高智能机器人技术提供了新思路,并发表在国际材料领域期刊《先进材料》(Advanced Materials)上。



图片来自《先进材料》(Advanced Materials)人类躯体感受系统中的多模态感知可帮助人们获得更全面的物体属性,并对物体的状态做出准确判断,尤其是不同受体的感觉信号在一定条件下可被神经元整合,并发送到大脑皮层作进一步处理(图1a)。与单模态感知相比,多模态融合感知在评估物体属性和提高物体识别精度方面具有明显优势。在传统的人工感知系统中,多模态信息的处理多采用串行计算架构,传感信号需转换为数字模式才能被处理器处理,产生较大功耗和通信带宽开销。


此外,传统半导体技术在脉冲域构建多模态感知系统方面,还面临着器件集成和电路复杂性方面的挑战。因此,迫切需要开发更高效的多模态融合感知硬件方案。生物感知系统具有并行分布式感官信息处理、低能耗、高容错性等特点,显示出克服传统困境的重要潜力。


此次,中科院微电子所刘明团队和复旦大学刘琦团队研发了结构紧凑的多模态融合感知脉冲神经元(MFSN)阵列,该阵列由异质集成的压力传感器和NbOx忆阻器构成(图1b)。其中,压力传感器用来感知压力,NbOx忆阻器用来产生脉冲输出并感知温度变化。当压力和温度两种激励同时作用于MFSN时,多模态的模拟感觉信息可以融合为一个脉冲序列,显示出优异的数据压缩和脉冲转换能力。


此外,研究人员通过解耦输出脉冲的频率和振幅,还可从融合信号中获得独立的压力和温度信息,支持了神经元对于单模态信息的保真度和多模态感知能力。团队进一步将MFSN阵列与脉冲神经网络结合,构建了一种人工多模态感知系统,成功模拟了人体躯体感觉系统中的多模态信息(温度和压力)感知和多模态物体(即不同温度、重量和形状的物体)的分类能力。


前述成果有助于在未来进一步构建高效的多模态脉冲感知系统,并为发展高智能机器人技术提供新思路。

关键词: 智能机器人




AI人工智能网声明:

凡资讯来源注明为其他媒体来源的信息,均为转载自其他媒体,并不代表本网站赞同其观点,也不代表本网站对其真实性负责。您若对该文章内容有任何疑问或质疑,请立即与网站(www.aichinaw.com)联系,本网站将迅速给您回应并做处理。


联系电话:021-31666777   新闻、技术文章投稿QQ:3267146135   投稿邮箱:syy@gongboshi.com

工博士人工智能网
商城
服务机器人
智能设备
协作机器人
智慧场景
AI资讯
人工智能
智能机器人
智慧城市
智慧农业
视频
工业机器人
教育机器人
清洁机器人
迎宾机器人
资料下载
服务机器人
工博士方案
品牌汇
引导接待机器人
配送机器人
酒店服务机器人
教育教学机器人
产品/服务
服务机器人
工业机器人
机器人零部件
智能解决方案
扫描二维码关注微信
扫码反馈

扫一扫,反馈当前页面

咨询反馈
扫码关注

微信公众号

返回顶部