咨询热线:021-80392549

 QQ在线  企业微信
 资讯 > 大数据 > 正文

大数据核心技术介绍:大数据处理技术

2020/08/14531

大数据之所以能够从概念走向落地,说到底还是因为大数据处理技术的成熟,面对海量的数据,在有限的硬件条件下,以低成本满足大数据处理的各种实际需求。那么具体处理大数据需要哪些技术,今天我们来简单介绍一下大数据核心技术。

大数据处理,其实最主要的支撑技术就是分布式和并行计算、大数据云以及大数据内存计算。



大数据的分布式和并行计算

分布式计算,将复杂任务分解成子任务、同时执行单独子任务的方法,所以称之为分布式并行计算。分布式计算比传统计算更快捷、更高效,可在有限的时间内处理大量的数据,完成复杂度更高的计算任务。

而Hadoop,作为代表性的第一代开源框架,就是基于分布式并行计算的思想来实现的。

Hadoop分布式文件系统,建立起可靠、高带宽、低成本的数据存储集群,便于跨机器的相关文件管理。

Hadoop的MapReduce引擎,则是高性能的并行/分布式MapReduce算法数据的处理实现。

云计算和大数据

当数据的规模越来越大,存储和管理大数据,在硬件和软件上都需要提升,而硬件资源成本高昂,对企业而言会造成极大的成本负担。而云计算,提供共享计算资源集合,支持在云上进行应用程序、存储、计算、网络、开发、部署平台以及业务流程。

在云计算中,所有的数据被收集到数据中心,然后分发给最终用户。而且,自动数据备份和恢复还能够确保业务连贯性。因此在大数据当中,云计算技术同样提供了重要的支持。

大数据内存计算技术

对大数据处理能力需求,可以通过分布式计算得到基本的满足。但在想要进一步提升处理能力和速度,又需要内存计算(IMC)来完成。Hadoop之后出现的Spark,就是基于内存计算,大大提升数据处理效率。

IMC使用在主存储器(RAM)中的数据,这使得数据处理的速度更快。结构化数据存储在关系数据库中(RDB),使用SQL查询进行信息检索。非结构化数据包括广泛的文本、图像、视频等,则通过NoSQL数据库来完成存储。

IMC处理大数据的数据量,NoSQL数据库处理大数据的多样性。

关于处理大数据需要哪些技术,大数据核心技术,以上就为大家做了一个简单的介绍了。大数据处理,离不开技术手段的支持,而掌握大数据技术的人才,将在行业发展当中掌握更好的机遇。

关键词:




AI人工智能网声明:

凡资讯来源注明为其他媒体来源的信息,均为转载自其他媒体,并不代表本网站赞同其观点,也不代表本网站对其真实性负责。您若对该文章内容有任何疑问或质疑,请立即与网站(www.aichinaw.com)联系,本网站将迅速给您回应并做处理。


联系电话:021-31666777   新闻、技术文章投稿QQ:3267146135   投稿邮箱:syy@gongboshi.com

工博士人工智能网
商城
服务机器人
智能设备
协作机器人
智慧场景
AI资讯
人工智能
智能机器人
智慧城市
智慧农业
视频
工业机器人
教育机器人
清洁机器人
迎宾机器人
资料下载
服务机器人
工博士方案
品牌汇
引导接待机器人
配送机器人
酒店服务机器人
教育教学机器人
产品/服务
服务机器人
工业机器人
机器人零部件
智能解决方案
扫描二维码关注微信
扫码反馈

扫一扫,反馈当前页面

咨询反馈
扫码关注

微信公众号

返回顶部